Efficient Minimization of Decomposable Submodular Functions

By Peter Stobbe (speaking) and Andreas Krause

KEY PROPERTIES FOR MINIMIZATION

Continuous optimization: **convexity**

Discrete optimization: submodularity

Real-valued functions of sets eg. Classifying pixels, clustering data points, many more General submodular minimization : O^{*}(n⁵) Some restrictive classes (pairwise interactions): efficient

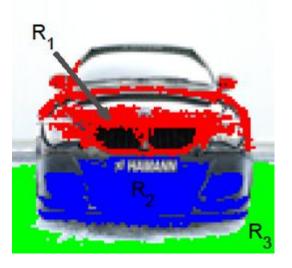
NEW CLASS OF SUBMODULAR FUNCTIONS! DECOMPOSABLE

$$f(A) = \sum_{j} \phi_{j} \left(\sum_{k \in A} w_{j}[k] \right) \checkmark$$
$$\phi_{j} \text{ concave } \mathbf{W}_{i} \ge \mathbf{0}$$

Example: Sum of higher order potentials for MAP inference of Markov Random Field

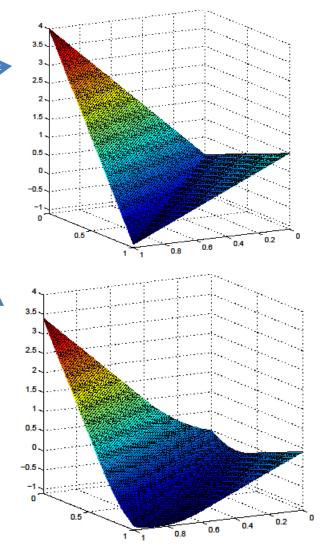
$$f(A) = \sum_{j} \left| R_{j} \setminus A \right| \left| R_{j} \cap A \right|$$

Need a decomposition of the function into a sum of simpler functions



OVERVIEW OF Smoothed Lovàsz Gradient (SLG)

- 1. Formulate as a convex optimization problem *(Lovàsz 1980)*
- Apply modern techniques for general nonsmooth convex optimization (Nesterov 2004)
 Decomposition makes it possible!
- 3. Use a novel stopping criterion to finish early with optimal answer for discrete problem



LET'S SEE SOME RESULTS!

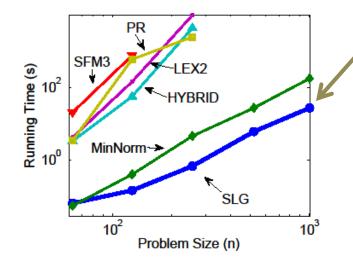


Original

No potentials

Pairwise (Ising) potentials

Higher order potentials (Made possible by SLG)



Matches or outperforms other general-purpose algorithms on standard test problems

> CAN SOLVE PROBLEMS WITH 10,000 VARIABLES IN A MINUTE.